Files
bikinibottom/DreamCanvas/backend/routes.py
2026-01-28 16:54:06 +01:00

59 lines
2.1 KiB
Python

from fastapi import APIRouter, HTTPException
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
from .models import LLMRequest, PromptRequest
from .services import generate_images, get_quick_prompts_data, ask_llm_service
from PIL import Image
import io
router = APIRouter()
# Serve HTML file (index.html)
@router.get("/")
async def get_index():
return FileResponse("ui/index.html")
# Endpoint to serve quick prompts from configuration file
@router.get("/quick_prompts/")
async def get_quick_prompts():
try:
prompts = get_quick_prompts_data()
return JSONResponse(content=prompts)
except Exception as e:
raise HTTPException(status_code=500, detail="Error reading quick prompts file.")
# Endpoint to ask the LLM for creative ideas based on the positive prompt
@router.post("/ask_llm/")
async def ask_llm(request: LLMRequest):
try:
response = ask_llm_service(request.positive_prompt)
return JSONResponse(content={"assistant_reply": response})
except Exception as e:
raise HTTPException(status_code=500, detail="Error interacting with LLM: " + str(e))
# Endpoint to generate images
@router.post("/generate_images/")
async def generate_images_api(request: PromptRequest):
try:
images, seed = await generate_images(
request.positive_prompt,
request.negative_prompt,
request.steps,
(request.width, request.height)
)
# Convert images to a format FastAPI can return
image_responses = []
for node_id in images:
for image_data in images[node_id]:
img = Image.open(io.BytesIO(image_data))
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
# Append the image response to a list
image_responses.append(StreamingResponse(img_byte_arr, media_type="image/png"))
return image_responses[0] # Return the first image for simplicity
except Exception as e:
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")